Cinétique chimique

Chapitre 3.1 : Cinétique formelle, aspect macroscopique de la cinétique
Chapitre 3.2 : Mécanismes réactionnels, aspect microscopique de la cinétique
Chapitre 3.3 : Introduction à la cinétique en réacteur ouvert
Chapitre 3 : Cinétique formelle : évolution temporelle d’un système chimique

I - VITESSES D’UNE REACTION CHIMIQUE

1. ÉCRIPTION DE REACTION ET AVANCEMENT ξ
2. SYSTÈME ETUDE ET DIFFERENTES DEFINITIONS
 2.1. VITESSE INSTANTANEE DE FORMATION ET DE DISPARITION DE B_i
 2.2. VITESSE DE REACTION V_R DE LA REACTION Σν_iA_i = 0 = Σν_iA_i
 2.3. VITESSE VOLUMIQUE OU VITESSE SPECIFIQUE V DE LA REACTION Σν_iA_i = 0 = Σν_iA_i
3. REACTION AVEC OU SANS ORDRE ; ORDRE PARTIEL ET GLOBAL - ORDRE INITIAL ET COURANT
 3.1. ORDRE PARTIEL ET GLOBAL D’UNE REACTION
 3.2. LOI DE VAN’T HOFF
 3.3. ORDRE INITIAL ET ORDRE COURANT

II - INFLUENCE DU FACTEUR CINETIQUE TEMPERATURE SUR LA VITESSE DE LA REACTION

1. LOI D’ARRHENIUS
2. DETERMINATION EXPERIMENTALE DE L’ENERGIE D’ACTIVATION E_a
3. EFFETS DE LA TEMPERATURE ; EXEMPLES EN CHIMIE ET DANS LA VIE COURANTE

III - ETUDE DE QUELQUES REACTIONS D’ORDRE SIMPLE : ETUDE DU FACTEUR CINETIQUE CONCENTRATION

1. TECHNIQUES EXPERIMENTALES UTILISEES
2. METHODE DIFFERENTIELLE
 2.1. PRINCIPE DE LA METHODE
 2.2. APPLICATION DE LA METHODE AUX VITESSES INITIALES
3. METHODE INTEGRALE
 3.1. REACTION D’ORDRE 0.
 3.2. REACTION D’ORDRE 1.
 3.3. REACTION D’ORDRE 2.
4. DETERMINATION DES ORDRES PARTIELS : METHODE DE LA DEGENERESCENCE DE L’ORDRE, OU METHODE D’ISOLEMENT D’OSTWALD
 4.1. PRINCIPE DE LA METHODE
 4.2. EXEMPLE : ETUDE D’UNE REACTION DE COMPLEXATION

IV CONCLUSION
Nous poursuivons l’étude de l’évolution temporelle d’un système chimique, entamée l’année dernière en Terminale S, où les notions de facteurs cinétiques d’une part et de suivis cinétiques ont été introduits.

D’une manière très générale, la cinétique chimique est l’étude de la vitesse des transformations chimiques. Dans ce chapitre, nous nous proposons d’étudier l’influence de quelques facteurs cinétiques sur la vitesse d’une transformation : quelle est l’influence de la température ou de la concentration des réactifs sur la vitesse de la transformation étudiée ? Comment étudier la vitesse de cette transformation décrite par une réaction chimique donnée ? Voilà ce que nous allons étudier...

I – Vitesses d’une réaction chimique

2. Système étudié et différentes définitions

2.1. Vitesse instantanée de formation et de disparition de \(B_i \)

Illustration : en milieu aqueux, l’urée \((NH_2)_2C=O\) se transforme en ion \(NH_4^+\) et \(NCO^-\) :

\[
(NH_2)_2C=O_{(aq)} \rightarrow NH_4^+_{(aq)} + NCO^-_{(aq)}
\]

<table>
<thead>
<tr>
<th>(t / \text{min})</th>
<th>(n(\text{Urée})/\text{mol})</th>
<th>(n(\text{NCO}^-)/\text{mol})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>2818</td>
<td>0,0836</td>
<td>0,0164</td>
</tr>
<tr>
<td>4800</td>
<td>0,0736</td>
<td>0,0264</td>
</tr>
<tr>
<td>9600</td>
<td>0,056</td>
<td>0,044</td>
</tr>
<tr>
<td>18220</td>
<td>0,0313</td>
<td>0,0687</td>
</tr>
<tr>
<td>28600</td>
<td>0,0162</td>
<td>0,0838</td>
</tr>
<tr>
<td>40000</td>
<td>0,0078</td>
<td>0,0922</td>
</tr>
</tbody>
</table>
Pour calculer la vitesse instantanée d’une réaction, nous traçons la tangente à la courbe à l’instant cherché puis nous calculons la pente de cette tangente. Pour calculer la pente, nous prenons deux points A et B et nous évaluons la variation de quantité de matière \(\Delta n \) correspondant à la variation de temps \(\Delta t \). La pente s’obtient par le calcul \(\Delta n / \Delta t \).
3. Réaction avec ou sans ordre ; ordre partiel et global - ordre initial et courant

3.2. Loi de Van’t Hoff

Une réaction suit la loi de Van't Hoff lorsque l'ordre partiel de chacun des réactifs est égal à son nombre stoechiométrique

The Nobel Prize in Chemistry 1901
"In recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions"

Jacobus Henricus VAN'T HOFF 1852-1911
Chimiste néerlandais
1er prix Nobel de chimie en 1901

3.3. ordre initial et ordre courant

Application 2
Préciser les ordres partiels et l’ordre global de chacune des réactions suivantes

<table>
<thead>
<tr>
<th>Réaction chimique</th>
<th>Loi de vitesse expérimentale</th>
<th>Ordre partiel par rapport à :</th>
<th>Ordre global de la réaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2(g) + \text{I}_2(g) \rightarrow 2 \text{HI}(g))</td>
<td>(v = k.[\text{H}_2][\text{I}_2])</td>
<td>(\text{H}_2)</td>
<td>(\text{I}_2)</td>
</tr>
<tr>
<td>(2 \text{NO}(g) + \text{O}_2(g) \rightarrow 2 \text{NO}_2(g))</td>
<td>(v = k.[\text{NO}]^2[\text{O}_2])</td>
<td>(\text{NO})</td>
<td>(\text{O}_2)</td>
</tr>
</tbody>
</table>
\[
\begin{array}{|c|c|c|}
\hline
\text{CH}_3\text{CHO}(g) \rightarrow \text{CH}_4(g) + \text{CO}(g) & v = k_1[\text{CH}_3\text{CHO}]^{3/2} & \text{CH}_3\text{CHO} \\
\text{Cl}_2(g) + \text{CO}(g) \rightarrow \text{Cl}_2\text{CO}(g) & v = k_2[\text{Cl}_2][\text{CO}]^{1/2} & \text{Cl}_2 \quad \text{CO} \\
\text{tBuCl} + \text{HO}^- \rightarrow \text{tBuOH} + \text{Cl}^- & v = k_3[\text{tBuCl}] & \text{tBuCl} \quad \text{HO}^- \\
\hline
\end{array}
\]

Rem : tBu représente le groupe tertbutyle : \((\text{CH}_3)_3\text{C}\).

Application 3

Bodenstein étudia au début du siècle la synthèse du bromure d'hydrogène en phase gazeuse à partir de dihydrogène et de dibrome. Il montra expérimentalement que la vitesse de cette réaction obéissait à la loi cinétique complexe suivante :

\[
\text{H}_2 + \text{Br}_2 \rightarrow 2 \text{HBr} \quad v = k \left(\frac{[\text{H}_2][\text{Br}_2]}{1 + k' \frac{[\text{HBr}]}{[\text{Br}_2]}} \right)
\]

1. La réaction a-t-elle un ordre initial ? Si oui, préciser sa valeur
2. La réaction a-t-elle un ordre courant ordre courant de la réaction ?

II - Influence du facteur cinétique température sur la vitesse de la réaction

1. Loi d’Arrhénius

\[
\text{forme dérivée : } \quad \frac{d\ln k}{dT} = \frac{E_a}{RT^2}
\]

\[
\text{forme intégrée : } \quad \text{Ln}(\frac{k_2}{k_1}) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]

Svante Arrhenius 1859-1927
Chimiste suédois
Prix Nobel de chimie en 1903

"in recognition of the extraordinary services he has rendered to the advancement of chemistry by his electrolytic theory of dissociation"
2. Détermination expérimentale de l’énergie d’activation E_a

Application 4

La constante de vitesse de la réaction

$$2 \text{N}_2\text{O}_5(\text{g}) \rightarrow 4 \text{NO}_2(\text{g}) + \text{O}_2(\text{g})$$

double quand on passe de 22,50°C à 27,47°C.

Déterminer l’énergie d’activation de la réaction.

Données : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
</table>
| • $A T_1 = 22,50 + 273,15 = 295,65 \text{ K}$, $k_1 = k$
• $A T_2 = 27,47 + 273,15 = 300,62 \text{ K}$ $k_2 = 2k$
Réponse : $E_a = 103 \ 056 \text{ J.mol}^{-1} \quad \text{Ea = 103,1 kJ.mol}^{-1}$ |

⚠️ : Préciser bien l’unité de la constante de vitesse.

Application 5

L’ion Ni^{2+} forme des *complexes* (composés chimiques généralement colorés) avec l’ion thiocyanate SCN^- ; on s’intéresse à un équilibre mettant en jeu deux complexes :

$$\text{Ni(SCN)}^+ + \text{SCN}^- = \text{Ni(SCN)}_2\quad \text{constante de vitesse } k$$

On a mesuré la constante de vitesse k à plusieurs températures différentes et les résultats sont rassemblés dans le tableau ci-dessous :

| T en °C | 19,7 | 25 | 30 | 33,5 |
| k en mol$^{-1}.\text{L.s}^{-1}$ | $0,66.10^5$ | $1,40.10^5$ | $2,21.10^5$ | $3,32.10^5$ |

KEY : 1. Déterminer l’énergie d’activation de cette réaction, soit en vous effectuant une représentation graphique, soit en effectuant une régression linéaire. Calculer également la valeur du facteur préexponentiel A.

KEY : 2. Calculer la constante de vitesse à 40°C.

Données :

• Constante des gaz parfaits : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$

• $T /K = T /°C + 273 \quad (273,15 \text{ rigoureusement})$

Solution

1°)
<table>
<thead>
<tr>
<th>T en °C</th>
<th>19,7</th>
<th>25</th>
<th>30</th>
<th>33,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k en mol⁻¹.L⁻¹.s⁻¹</td>
<td>0,66.10⁵</td>
<td>1,40.10⁵</td>
<td>2,21.10⁵</td>
<td>3,32.10⁵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T en K</th>
<th>292,7</th>
<th>298</th>
<th>303</th>
<th>306,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/T</td>
<td>3,42.10⁻³</td>
<td>3,36.10⁻³</td>
<td>3,30.10⁻³</td>
<td>3,26.10⁻³</td>
</tr>
<tr>
<td>Ln(k)</td>
<td>11,10</td>
<td>11,85</td>
<td>12,30</td>
<td>12,71</td>
</tr>
</tbody>
</table>

Traçons :

La droite a pour équation : Ln k = -Eₐ/R.T + LnA = -10289/T + 46,294

D'où : Eₐ/R = 10 289

Eₐ = 10 289.R = 85 542,7 J.mol⁻¹

Eₐ = 10 289.R = 85,54 kJ.mol⁻¹

2°) Utilisons le résultat précédent :

à 40+273 = 313 K : Ln k = -10 289/313 + 46,294

Ln k = 13,42

k = 6,74.10⁵ mol⁻¹.L⁻¹.s⁻¹

Pour s'entraîner : Régression linéaire
Entrer les valeurs suivantes :

<table>
<thead>
<tr>
<th>1/T</th>
<th>3,42.10^{-3}</th>
<th>3,36.10^{-3}</th>
<th>3,30.10^{-3}</th>
<th>3,26.10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(k)</td>
<td>11,10</td>
<td>11,85</td>
<td>12,30</td>
<td>12,71</td>
</tr>
</tbody>
</table>

Résultats donnés par la calculatrice : \(y = a \cdot x + b \)

\[a = -9795,9183 \quad b = 44,6593877 \quad r = -0,9945202 \]

3. Effets de la température ; exemples en chimie et dans la vie courante

Pour bloquer cinétiquement une réaction, on peut faire subir au système en évolution un refroidissement rapide. La vitesse de la réaction devient alors très très faible. L’évolution est stoppée. On a effectué ce que l’on appelle une trempe. Au laboratoire, cette trempe consistera à rajouter de l’eau glacée (eau + glace pilée) au prélèvement effectué, afin de stopper l’évolution du système à l’instant \(t \).

La conservation des éléments dans un milieu très froid ralentit et bloque des réactions de décomposition.

Dans l’industrie, le contrôle de la température dans un réacteur est primordial. Pour la synthèse de l’ammoniac par exemple, la température doit être maintenue voisiné de 450°C. Les contraintes ne sont là pas uniquement cinétiques mais aussi thermodynamiques.

Application 6

La notice d’utilisation d’une colle à durcisseur (colle à deux composants entre lesquels a lieu une réaction) indique les temps de durcissements suivants :

\[24 \text{ h à 20°C et 4 h à 40°C} \]

Quel est le temps de durcissement de cette colle à 60°C ?

Solution

La colle sèche 6 fois plus vite à 40° qu’à 20° : toutes choses égales par ailleurs, cela signifie que \(k(40) = 6 \times k(20) \)

Il faut 29 fois moins de temps pour coller la pièce à 60° qu’il n’en faut à 40°

Soit : \((24 \times 60) / 29 = 49 \text{ min19 s} ! \)
III - Étude de quelques réactions d'ordre simple : étude du facteur cinétique concentration

1. Techniques expérimentales utilisées

Soit la réaction schématique A=B. Expérimentalement, le plus souvent, l’on mesure une grandeur physique Y en fonction du temps ; ensuite, il faut établir la relation qui lie cette grandeur et la concentration en réactif A.

Voici quelques exemples de suivis de réaction par des méthodes physiques :

- mesure de la conductivité \(\sigma \) de solution, adaptée lorsqu’il y a des variations de quantités et de nature des ions. Voir fiche conductimétrie distribuée en TP.
- mesure du pH de la solution, si la réaction produit ou consomme des ions OH\(^-\) ou H\(_3\)O\(^+\).
- mesure de la pression ou du volume V de gaz, si un dégagement gazeux a lieu. Nous utiliserons l’équation d’état des gaz parfait PV = nRT MAIS attention, on mesure souvent la pression TOTALE alors que l’on doit déterminer souvent la pression PARTIELLE d’un réactif : comment lier les deux ?
- mesure d’une absorbance par suivi spectrophotométrique UV-visible, si une substance est colorée. Voir fiche spectrophotométrie distribuée en TP, on pense à la loi de Beer-Lambert.
- mesure du pouvoir rotatoire d’une solution, si une substance est optiquement active. On pense à la loi de Biot.
- …Voir exercices et travaux pratiques.

Ces mesures précédents ont l’avantage de peu perturber le milieu réactionnel ; on pourra suivre également l’évolution d’une concentration en faisant des prélèvements afin de doser une espèce X (prélèvement – trempe pour bloquer l’évolution à l’instant t – dosage) : c’est une méthode chimique.

Après l’acquisition des données, il faut déterminer l’ordre de la réaction. Les méthodes exposées ci-après le permettent.

Dans toutes les expériences, la température T est constante.

2. Méthode différentielle

2.1. principe de la méthode
Application 7

1. Déterminer la loi de vitesse pour la réaction suivante

\[\text{NO}(g) + \text{H}_2(g) \rightarrow \text{produits} \]

à partir des vitesses initiales du tableau ci-dessous : utiliser pour cela la méthode différentielle appliquée aux vitesses initiales pour déterminer les ordres partiels \(a \) de la réaction par rapport à NO et \(b \) par rapport à H\(_2\).

<table>
<thead>
<tr>
<th>[H(_2)] / mol.L(^{-1})</th>
<th>[NO] / mol.L(^{-1})</th>
<th>(v_0) / mol.L(^{-1}).s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.199</td>
<td>0.0425</td>
</tr>
<tr>
<td>0.5</td>
<td>0.375</td>
<td>0.156</td>
</tr>
<tr>
<td>0.361</td>
<td>0.5</td>
<td>0.200</td>
</tr>
<tr>
<td>0.256</td>
<td>0.5</td>
<td>0.137</td>
</tr>
<tr>
<td>0.184</td>
<td>0.5</td>
<td>0.099</td>
</tr>
</tbody>
</table>

2. Déterminer la constante de vitesse \(k \).

Solution

Réponse : \(a = 2b = 1 \)

Ainsi : \(v = k.[\text{NO}]_0^2.[\text{H}_2]_0^1 \)

2. Déterminons la constante de vitesse \(k \) :

Exp. 1 : \(k = 2,15 \) Exp. 2 : \(k = 2,22 \) Exp. 3 : \(k = 2,22 \) Exp. 4 : \(k = 2,14 \) Exp. 5 : \(k = 2,15 \)

\(k = 2,18 \) mol\(^{-2}.L^2.s^{-1} \) Attention à l’unité de \(k \).

3. Méthode intégrale

Dans cette méthode, on postule un ordre \(u \) et on intègre l’équation différentielle :
Les cas fréquents sont les cas suivants (\(\text{les seuls au programme} \)) : \(u = 0,1 \) ou 2.

3.2. Réaction d’ordre 1.

Application 8
étude de la réaction d’hydrolyse d’un dérivé monohalogéné :
En notant R-Br le 2-bromo-2-méthylpropane, le bilan de sa réaction d’hydrolyse s’écrit :
\[R - Br + H_2O \rightarrow R - OH + HBr \]
Cette réaction est réalisée dans un solvant constitué d’une mélange de 10% d’eau et de 90% de propanone. **On fait au départ l’hypothèse que la loi de vitesse est de la forme \(v = k [Br]^p \).**
Le but est de déterminer la valeur de \(p \).
Les résultats obtenus à 25°C sont rassemblés dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>t / heure</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>c / mol.L⁻¹</td>
<td>0,1</td>
<td>0,09</td>
<td>0,08</td>
<td>0,065</td>
<td>0,052</td>
<td>0,033</td>
<td>0,019</td>
<td>0,011</td>
</tr>
</tbody>
</table>

\(c \) représente la concentration en R-Br.

Déterminer l’ordre \(p \) de la réaction.

Solution

<table>
<thead>
<tr>
<th>t / heure</th>
<th>[RBr]/mol.L⁻¹</th>
<th>[RBr]₀</th>
<th>Ln([RBr]/[RBr]₀)</th>
<th>1/[RBr]</th>
<th>1/[RBr]₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0,09</td>
<td>1</td>
<td>-0,1054</td>
<td>1,111</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,08</td>
<td>1</td>
<td>-0,2231</td>
<td>2,500</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,065</td>
<td>1</td>
<td>-0,4308</td>
<td>5,385</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,052</td>
<td>1</td>
<td>-0,6539</td>
<td>9,231</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0,033</td>
<td>1</td>
<td>-1,1087</td>
<td>20,303</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,019</td>
<td>1</td>
<td>-1,6607</td>
<td>42,632</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0,011</td>
<td>1</td>
<td>-2,2073</td>
<td>80,909</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Traçons } \ln([\text{RBr}]/[\text{RBr}]₀) = f(t) \text{ en utilisant le logiciel Graphe2D :} \)

![Graph showing the relationship between ln([RBr]/[RBr]₀) and t](image-url)
Equation de la droite de régression linéaire :
$$ Y = -0,0553x + 0,0038 \quad R^2 = 1 $$

Traçons également $$ \frac{1}{[RBr]} - \frac{1}{[RBr]_0} = f(t) $$ en utilisant le logiciel Graphe2D :

Equation de la droite de régression linéaire :
$$ Y = 1,8931x - 7,1912 \quad R^2 = 0,923 $$

Désintégration radioactive

Les désintégrations radioactives sont des réactions nucléaires d’ordre 1.
Le bilan général est :
Noyau-parent \longrightarrow Noyau-fille + rayonnement

Cela signifie que la relation entre la vitesse de désintégration et le nombre N de noyaux radioactifs est de la forme :
$$ v = kN $$

Dans ce contexte particulier, la constante de vitesse k est appelée **constante de désintégration**.
Le nombre de noyaux qui restent au temps t est donné par :
$$ N = N_0e^{-kt} $$ où $$ N_0 $$ est le nombre de noyaux initial, à t = 0.

Le temps de demi-réaction dans ce contexte est appelé demi-vie. Cette demi-vie peut varier de quelques fractions de seconde à des milliards d’année.

<table>
<thead>
<tr>
<th>Nucléide</th>
<th>Demi-vie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>12,3 années</td>
</tr>
<tr>
<td>Carbone-14</td>
<td>5,73.10³ années</td>
</tr>
<tr>
<td>Carbone-15</td>
<td>2,4 s</td>
</tr>
<tr>
<td>Potassium-40</td>
<td>1,26.10⁹ années</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>5,26 années</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>28,1 années</td>
</tr>
<tr>
<td>Iode-131</td>
<td>8,05 jours</td>
</tr>
<tr>
<td>Césium-137</td>
<td>30,17 années</td>
</tr>
</tbody>
</table>
Application 9

désintégration radioactive

Le transformation de l'uranium-238 en plomb-206 a un temps de demi-réaction de 4,51.10^9 années. Un échantillon de sédiment d'océan contient 1,5 mg d'uranium-238 et 0,460 mg de plomb-206. Estimer l’âge du sédiment si l'on suppose que la désintégration radioactive de l’uranium ne donne que du plomb-206 et que le plomb-206 ne se transforme pas.

Solution

- A t=0, n(U,t=0)
- A t, n(U,t) + n(Pb,t) = n(U,t=0)

\[n(U,t) = n(U,t=0).\exp(-k.t) \]

\[\text{avec: } n(U,t) = 1,50.10^{-3} / 238 \text{ et } n(U,t=0) = 1,50.10^{-3} / 238 + 0,46.10^{-3} / 206 \]

De \(k = \frac{\ln 2}{t_{1/2}} \), passons à l’application numérique : le sédiment est âgé de 1,97.10^9 années

3.3. Réaction d’ordre 2.

Application 10 : Oxydation des ions Fer(II) par les ions Co(III).

A 298 K, on mélange 100 mL d’une solution aqueuse d’ions cobalt(III) Co^{3+}, de concentration initiale 1.10^{-3} mol.L^{-1} et 100 mL d’une solution aqueuse d’ions Fer(II) Fe^{2+}, de concentration initiale 1.10^{-3} mol.L^{-1}.

On étudie dans la suite la réaction d’oxydoréduction suivante :

\[\text{Fe}^{2+} + \text{Co}^{3+} \longrightarrow \text{Fe}^{3+} + \text{Co}^{2+} \]

Expérimentalement, on détermine la concentration molaire des ions Fe^{2+} à différentes dates.
<table>
<thead>
<tr>
<th>t / s</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fe$^{2+}$] / mol.L$^{-1}$</td>
<td>2,78.10$^{-4}$</td>
<td>1,92.10$^{-4}$</td>
<td>1,47.10$^{-4}$</td>
<td>1,19.10$^{-4}$</td>
<td>1,00.10$^{-4}$</td>
<td>0,86.10$^{-4}$</td>
</tr>
</tbody>
</table>

1. Calculer la concentration initiale des réactifs dans le mélange.

2. Exprimer la vitesse de la réaction si les ordres partiels sont un par rapport à chaque réactif.

3. Montrer, à l'aide d'une construction graphique appropriée, que les résultats expérimentaux sont en accord avec une cinétique global d’ordre 2. En déduire, à partir de votre tracé ou par une régression linéaire, la valeur de la constante de vitesse k.

On prendra pour échelle : 1 cm en abscisse pour 10 secondes 2 cm en ordonnée pour 1000 mol$^{-1}$.L

4. Calculer le temps de demi-réaction.

Solution

1. Les concentrations sont divisées par deux car on mélange des volumes égaux des deux mêmes solutions. Ainsi : $[\text{Co}^{3+}] = 5.10^{-4}$ mol.L$^{-1}$ et $[\text{Fe}^{2+}] = 5.10^{-4}$ mol.L$^{-1}$

2. $v = k.[\text{Co}^{3+}].[\text{Fe}^{2+}]$

3. Montrer, à l'aide d'une construction graphique appropriée, que les résultats expérimentaux sont en accord avec une cinétique global d’ordre 2. En déduire, à partir de votre tracé ou par une régression linéaire, la valeur de la constante de vitesse k.

Par définition de la vitesse volumique, ou spécifique de la réaction, alors :

$$v = -\frac{d[\text{Fe}^{2+}]}{dt} = k[\text{Fe}^{2+}].[\text{Co}^{3+}]$$

Or, à chaque instant, $[\text{Co}^{3+}] = [\text{Fe}^{2+}]$, car les réactifs ont été mélangés en proportions stoechiométriques initialement ; ceci permet d’écrire l’équation différentielle en ne faisant apparaître que la concentration en Fe$^{2+}$:

$$-\frac{d[\text{Fe}^{2+}]}{dt} = k.[\text{Fe}^{2+}]$$

On sépare les variables avant d'intégrer :
\[
\int \frac{\text{d} [\text{Fe}^{2+}]}{[\text{Fe}^{2+}]} = \int \frac{1}{[\text{Fe}^{2+}]} \text{d}t
\]

\[
\frac{1}{[\text{Fe}^{2+}]} - \frac{1}{[\text{Fe}^{2+}]_0} = k.t
\]

Traçons la courbe \(1/[\text{Fe}^{2+}]\) en fonction du temps \(t\) :

<table>
<thead>
<tr>
<th>(t / s)</th>
<th>([\text{Fe}^{2+}] / \text{mol.L}^{-1})</th>
<th>(1/[\text{Fe}^{2+}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5,00E-04</td>
<td>2,000E+03</td>
</tr>
<tr>
<td>20</td>
<td>2,78E-04</td>
<td>3,597E+03</td>
</tr>
<tr>
<td>40</td>
<td>1,92E-04</td>
<td>5,208E+03</td>
</tr>
<tr>
<td>60</td>
<td>1,47E-04</td>
<td>6,803E+03</td>
</tr>
<tr>
<td>80</td>
<td>1,19E-04</td>
<td>8,403E+03</td>
</tr>
<tr>
<td>100</td>
<td>1,00E-04</td>
<td>1,000E+04</td>
</tr>
<tr>
<td>120</td>
<td>8,60E-05</td>
<td>1,163E+04</td>
</tr>
</tbody>
</table>

La courbe représentée est effectivement une droite, et les résultats sont bien en accord avec une réaction d'ordre global égal à 2.

La constante de vitesse \(k\) s'identifie à la pente de la droite :

\(k = 80,15 \text{ mol}^{-1}.\text{L.s}^{-1}\)

Le temps de demi-réaction de la réaction est le temps au bout duquel la moitié du réactif
limitant a disparu. Ici les deux réactifs sont introduits en proportions stoechiométriques, et donc aucun n'est limitant.

Le temps de demi-réaction correspond donc à la disparition ici de la moitié de l’un des deux réactifs, Fe²⁺ par exemple.

Alors :

\[t_{1/2} = \frac{1}{(80,15 \times 5.10^{-4})} = 24,95 \text{ s} = 24 \text{ s } 57' = 25 \text{ s} \]

En résumé :

Pour vérifier qu’une réaction schématisée A=B est **d’ordre 1**, on trace Ln [A] (ou Ln([A]/[A]₀) en fonction du temps afin de vérifier que Ln [A] est une fonction affine du temps : on doit obtenir une droite, dont la pente est égale à –k.

Pour une réaction schématisée A=B d’ordre 1, le temps de demi-réaction est indépendant de la concentration initiale [A]₀ : \(t_{1/2} = \frac{\ln 2}{k} \)

Pour vérifier qu’une réaction schématisée A=B est **d’ordre 2**, on trace 1/[A] (ou 1/[A] - 1/[A]₀) en fonction du temps afin de vérifier que 1/[A] est une fonction affine du temps : on doit obtenir une droite, dont la pente est égale à +k.

Pour une réaction schématisée A=B d’ordre 2, le temps de demi-réaction dépend de la concentration initiale [A]₀ : \(t_{1/2} = \frac{1}{k[A]_0} \)

4. Détermination des ordres partiels : méthode de la dégénérescence de l’ordre, ou méthode d’isolement d’Ostwald

4.1. principe de la méthode
La méthode de la dégénérescence de l’ordre consiste à utiliser un des réactifs A en très large excès, afin de pouvoir considérer que sa concentration reste constante tout au long de l’étude cinétique.

Dans ce cas : \(v = k[A]^p[B]^q \) devient \(v = k[A]_0[B]^q = k_{\text{app}}[B]^q \)

L’ordre de la réaction a diminué : il y a dégénérescence de l’ordre.

- L’ordre q est déterminé par les méthodes précédentes.
- Plusieurs expériences permettent d’étudier \(k_{\text{app}} = f([A]) \) et d’en déduire alors l’ordre partiel de la réaction par rapport à A.

Cette méthode d’isolation d’Ostwald s’appelle aussi la méthode de la dégénérescence de l’ordre :

Application 10

On note dans cette partie « EDTA » l’acide éthylénediaminetétraacétique. Les ions \(\text{Cu}^{2+} \) forment un composé coloré \(\text{Cu(dien)}^{2+} \) (un « complexe ») avec la diéthylènetriamine (notée dien, et dont la formule est aussi précisée en fin d’exercice). On se propose d’étudier la vitesse de la réaction :

\(\text{Cu(dien)}^{2+} + \text{EDTA} \rightarrow \text{CuY}^{2+} + \text{dien} \)

Cette réaction est totale. Rem : l’écriture simplifiée de la réaction justifie la différence de charge apparente.

Le tableau suivant résume les conditions expérimentales et les résultats d’une mesure de la concentration \(C \) en \(\text{Cu(dien)}^{2+} \) au cours du temps dans les conditions suivantes :

- \(\theta = 25^\circ \text{C} \) \(\text{pH} = 4,0 \) maintenu constant
- concentrations initiales : \([\text{Cu(dien)}^{2+}]_0 = 2,00.10^{-3} \text{ mol.L}^{-1} \) \([\text{EDTA}]_0 = 6,00.10^{-2} \text{ mol.L}^{-1} \).

<table>
<thead>
<tr>
<th>t (s)</th>
<th>(C) (mol.L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,50.10^{-3}</td>
</tr>
<tr>
<td>20</td>
<td>1,10.10^{-3}</td>
</tr>
<tr>
<td>30</td>
<td>0,80.10^{-3}</td>
</tr>
<tr>
<td>40</td>
<td>0,60.10^{-3}</td>
</tr>
<tr>
<td>50</td>
<td>0,43.10^{-3}</td>
</tr>
</tbody>
</table>

1. Donner l’expression de la vitesse de la réaction, en supposant qu’elle admet un ordre \(\alpha \) par rapport à \(\text{Cu(dien)}^{2+} \) et \(\beta \) par rapport à EDTA.
2. Montrer sans calcul que les conditions initiales choisies permettront de déterminer l’un des ordres partiels. En déduire l’expression de la constante apparente de vitesse \(k_{\text{app}} \).
3. Déterminer graphiquement, en utilisant le papier millimétré fourni, l’ordre partiel de la réaction par rapport à \(\text{Cu(dien)}^{2+} \) ? La démarche sera clairement justifiée. On pourra utiliser le tableau ci-dessous pour tracer la courbe adéquate.
4. Calculer la constante apparente de vitesse k_{app} et déterminer le temps de demi-réaction $t_{1/2}$.
5. Des mesures analogues ont conduit aux résultats suivants :

<table>
<thead>
<tr>
<th>[EDTA]₀ (mol.L⁻¹)</th>
<th>0,01</th>
<th>0,02</th>
<th>0,04</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{1/2}$ (s)</td>
<td>138</td>
<td>70</td>
<td>35</td>
</tr>
</tbody>
</table>

En déduire l’ordre partiel de la réaction par rapport à l’EDTA.

Solution

1. Dans ce cas : $v = k[\text{Cu(dien)}^{2+}]^a[\text{EDTA}]^b$.
2. Il faut remarquer que : $[\text{EDTA}]₀ \gg [\text{Cu(dien)}^{2+}]₀$: il y a une dégénérescence de l’ordre.
Par conséquent, on peut considérer que, au cours de la réaction alors :
$[\text{EDTA}] = \text{cste} = [\text{EDTA}]₀$.
Dans ce cas : $v = k[\text{Cu(dien)}^{2+}]^a[\text{EDTA}]^b = k[\text{Cu(dien)}^{2+}]^a[\text{EDTA}]₀^b$.
Dans ce cas : $v = k[\text{EDTA}]₀^b[\text{Cu(dien)}^{2+}]^a = k_{app} [\text{Cu(dien)}^{2+}]^a$.
Expression dans laquelle : $k_{app} = k[\text{EDTA}]₀^b$.

3. Faisons l’hypothèse d’un ordre partiel égal à 1 par rapport à Cu(dien)$^{2+}$: il faut résoudre :
$v = k_{app}[\text{Cu(dien)}^{2+}] = -d[\text{Cu(dien)}^{2+}]/dt$.
Séparons les variables : $d[\text{Cu(dien)}^{2+}]/[\text{Cu(dien)}^{2+}] = -k_{app}.dt$.
Qui par intégration entre l’instant initial et l’instant conduit à :
$\ln([\text{Cu(dien)}^{2+}]/[\text{Cu(dien)}^{2+}]₀) = -k_{app}.t$.
Soit : $\ln(C/C₀) = -k_{app}.t$.

$\ln(C) = \ln(C₀) - k_{app}.t$

Traçons la courbe correspondante :
Il s'agit bien d'une droite : L'ordre partiel a de la réaction par rapport à Cu(dien)$^{2+}$ est 1.

La constante de vitesse apparente est égale à : $k_{app} = 0,0308 \text{ s}^{-1}$.

Soit : $k_{app} = 3,1 \times 10^{-2} \text{ s}^{-1}$.

4. La constante de vitesse apparente est égale à : $k_{app} = 0,031 \text{ s}^{-1}$.

C'est une réaction d'ordre 1 : $t_{1/2} = \frac{\text{Ln}2}{k_{app}} = \frac{\text{Ln}2}{0,031} = 22,36 \text{ s}$

5. C'est une réaction d'ordre 1 : $t_{1/2} = \frac{\text{Ln}2}{k_{app}} = \frac{\text{Ln}2}{(k.[\text{EDTA}]_0^{b})}$

\[\text{Ln}(t_{1/2}) = \text{Ln}[\text{Ln}2]/(k.[\text{EDTA}]_0^{b})] = \text{Ln}(\text{Ln}2) - \text{Ln} - \text{Ln}([\text{EDTA}]_0^{b}) \]

\[\text{Ln}(t_{1/2}) = \text{Ln}(\text{Ln}2) - \text{Ln} - \text{b} \cdot \text{Ln}([\text{EDTA}]_0) \]

Traçons Ln(t_{1/2}) = f(Ln([EDTA]_0)) : c'est une droite de coefficient directeur $-b$:

- $b = -0,9896$:

Conclusion : l'ordre partiel b vaut 1.