

préparation du ds 1

\sim		-	-		_	_
ъ.	•	•		N	R	ъ.
-	4	w				

ba volko
☐ Connaître les noms des différents changements d'états.
□Connaître l'équation d'état des gaz parfaits.
□Savoir que la pression partielle d'un gaz i est la pression p _i de ce gaz dans un mélange de
gaz. Si y_i est la fraction molaire de ce gaz, alors $p_i = y_i \cdot p$ p étant la pression totale.
\square Connaître le lien entre pression partielle p _i , pression totale p et fraction molaire y _i .
\square Définition de l'avancement ξ et de l'avancement volumique ξ /V d'une réaction chimique.
□Définition de l'activité a _i d'un composé i en fonction de son état physique : en phase
condensée pure, solvant, soluté ou gaz parfait dans un mélange de gaz parfaits.
□Relation de Guldberg et Waage : expression de la constante d'équilibre d'une réaction K°.
K° ne dépend que de la température T.
□Expression du quotient de réaction d'une réaction Q. En comparant cette grandeur
instantanée à K°, on prévoit le sens d'évolution d'un système.
□Existence de réactions totales, de réactions équilibrées. Parfois, un réactif limitant peut
entraîner une rupture d'équilibre.
\Box Connaître la loi de beer-Lambert : $A = \varepsilon l c$ avec le sens de chacun des termes intervenant

- Dessiner l'allure du diagramme de phases (P, T) d'un corps pur.

 □Pour un diagramme de phases (P, T), attribuer les domaines du solide, du liquide et du gaz ; identifier le point triple et le point critique ; interpréter le déplacement du point représentatif de l'état du système, à T constante, ou bien à p constante.

 □Recenser les constituants physico-chimiques présents dans un système. Décrire la composition d'un système à l'aide des grandeurs physiques pertinentes.

 □Appliquer l'équation d'état des gaz parfaits pour calculer une pression ou une quantité de matière sans faire d'erreur dans les unités : pression en Pa, volume en m³, n en mol, T en K et R en J.K⁻¹.mol⁻¹.

 □Exprimer la pression partielle d'un gaz en mélange en fonction de la pression totale et des
- quantités de matière des gaz en présence dans le mélange. Ceci est facilité en faisant apparaître la quantité de matière gazeuse totale « en bout de ligne du tableau d'avancement » (dans une dernière colonne).
- □ Reconnaître une transformation physique, chimique ou nucléaire.

□Écrire l'équation de la réaction qui modélise une transformation chimique donnée et identifier les nombres stœchiométriques algébriques.
□Exprimer l'activité d'une espèce chimique pure ou dans un mélange dans le cas de solutions aqueuses très diluées ou de mélanges de gaz parfaits avec référence à l'état standard.
□Écrire la constante d'équilibre K° d'une réaction donnée en fonction des activités à l'équilibre.
☐Calculer le quotient de réaction d'une réaction donnée et savoir comparer le résultat à la constante d'équilibre (afin de prévoir le sens spontané d'évolution du système en évolution).
□Dresser un tableau d'avancement (éventuellement volumique), identifier le réactif limitant, en calculant l'avancement maximal, le réactif en excès et reconnaitre des proportions
stechiométriques.
☐Utiliser une constante d'équilibre : pour déterminer l'état final d'équilibre d'un système en évolution.
□ Reconnaitre une réaction quantitative (ou quasi-totale) et faire les approximations usuelles afin de déterminer rapidement l'état final d'équilibre.
□Savoir qu'avec un réactif en phase condensée (typiquement un solide), il peut y avoir une rupture d'équilibre si la quantité de matière de ce réactif n'est pas suffisante.
Savoir utiliser la loi de beer-Lambert : $A = \varepsilon.l.c$: à partir d'une mesure d'absorbance, revenir à une concentration ou bien déterminer le coefficient d'extinction molaire.
10 to this a disc content and of the determined to coefficient a cathletion motane.