

EXERCICES DU CHAPITRE 2

Les transformations chimiques

Corrigés des exercices

Transformations chimiques

Exercice 8 : évolutions de quelques systèmes

Soit la réaction équilibrée :

$$CH_3COOH_{(aq)} + HCOO^{-}_{(aq)} = CH_3COO^{-}_{(aq)} + HCOOH_{(aq)} K^{\circ} = 0,1$$

Prévoir le sens d'évolution des différents systèmes vers l'état d'équilibre si l'on part de :

- 1) $[CH_3COOH]_0 = [HCOO^-]_0 = [CH_3COO^-]_0 = 0.10 \text{ mol.L}^{-1}$
- 2) $[CH_3COOH]_0 = [HCOOH]_0 = [CH_3COO^-]_0 = 0.10 \text{ mol.L}^{-1}$
- 3) $[CH_3COOH]_0 = [HCOOH]_0 [HCOO^-]_0 = [CH_3COO^-]_0 = 0,10 \text{ mol.L}^{-1}$
- 4) $[CH_3COOH]_0 = 0.10 \text{ mol.L-1} \text{ et } [HCOOH]_0 = [HCOO-]_0 = [CH_3COO-]_0 = 0.010 \text{ mol.L-1}$

Dans le cas du mélange initial de la question 1), déterminer les valeurs des concentrations à l'équilibre.

Comparons dans chaque cas le quotient réactionnel initial Q_0 à la constante d'équilibre K° :

$$CH_3COOH_{(aq)} + HCOO_{(aq)} = CH_3COO_{(aq)} + HCOOH_{(aq)} K^{\circ} = 0,1$$

1) $[CH_3COOH]_0 = [HCOO^-]_0 = [CH_3COO^-]_0 = 0,10 \text{ mol.L}^{-1}$

Comme il n'y a pas d'acide HCOOH, le système n'est pas à l'équilibre et il évolue dans le sens direct: $Q_{01} = 0 < K^{\circ}_{1}$ de façon à ce que le quotient

réactionnel augmente pour atteindre la valeur de la constante à l'équilibre K°.

2) $[CH_3COOH]_0 = [HCOOH]_0 = [CH_3COO^{-}]_0 = 0,10 \text{ mol.L}^{-1}$

Comme il n'y a pas de base $HCOO^-$, le système n'est pas à l'équilibre et il évolue dans le sens indirect : $Q_{02} \rightarrow \infty$ >> K°_1

3) $[CH_3COOH]_0 = [HCOOH]_0 [HCOO-]_0 = [CH_3COO-]_0 = 0.10 \text{ mol.L}^{-1}$

 Q_{03} = 1 : Q_{03} > 0,1 alors le système évolue naturellement dans le sens d'une diminution du quotient réactionnel de façon à ce que Q_{03} diminue pour atteindre la valeur finale Q_{f3} = K°_{1} . Le système évolue donc dans le sens indirect.

4) $[CH_3COOH]_0 = 0.10 \text{ mol.L-1} \text{ et } [HCOOH]_0 = [HCOO^-]_0 = [CH_3COO^-]_0 = 0.010 \text{ mol.L}^{-1}$

 $Q_{04}=0,1:Q_{04}=K^\circ:$ alors le système n'évolue pas car il est déjà à l'équilibre chimique ; en effet : $Q_{04}=K^\circ.$ Du point de vue macroscopique, il n'y a aucune évolution.

Reprenons l'étude du cas 1):

$$[CH_3COOH]_0 = [HCOO^{-}]_0 = [CH_3COO^{-}]_0 = 0,10 \text{ mol.L}^{-1}$$

l'évolution est telle que :

En mol	$CH_3COOH_{(aq)} +$	$HCOO_{(aq)} =$	CH ₃ COO ⁻ (aq) +	HCOOH _(aq)
t = 0	0,10	0,10	0,10	0
téq	0,10 - x _{éq}	0,10 - x _{éq}	$0.10 + x_{eq}$	Xéq

Il faut donc résoudre maintenant l'équation qui fait apparaître l'avancement volumique à l'équilibre :

$$K^{\circ} = 0,1 = \frac{x_{\text{éq}}(0,10 + x_{\text{éq}})}{(0,10 - x_{\text{éq}})^{2}} \qquad 0,1 = \frac{0,10x_{\text{éq}} + x_{\text{éq}}^{2}}{0,010 - 0,2.x_{\text{éq}} + x_{\text{éq}}^{2}} \qquad 1 = \frac{x_{\text{éq}} + 10x_{\text{éq}}^{2}}{0,010 - 0,2.x_{\text{éq}} + x_{\text{éq}}^{2}}$$

$$0,010-0,2.x_{\text{éq}} + x_{\text{éq}}^2 = x_{\text{éq}} + 10x_{\text{éq}}^2$$
 $9x_{\text{éq}}^2 + 1,2x_{\text{éq}} - 0,010 = 0$

qui conduit aux deux solutions suivantes : $x_{\text{\'e}\alpha 1}$ = 7,87.10⁻³ mol.L⁻¹

Nous retenons la première valeur, positive :

 $x_{\text{\'eq1}} = 7.87.10^{-3} \text{ mol.L}^{-1} = 7.9.10^{-3} \text{ mol.L}^{-1}$

Ainsi à l'équilibre, il y a dans la solution :

 $\begin{array}{l} [CH_{3}COOH]_{0} = [HCOO^{\text{-}}]_{0} = 0,0921 \ mol.L^{\text{-}1} = 0,09 \ mol.L^{\text{-}1} \\ [CH_{3}COO^{\text{-}}]_{0} = 0,1079 \ mol.L^{\text{-}1} = 0,11 \ mol.L^{\text{-}1} \\ [HCOOH]_{0} = 7,9.10^{\text{-}3} \ mol.L^{\text{-}1} = 8.10^{\text{-}3} \ mol.L^{\text{-}1} \end{array}$