Atomes : nombres quantiques et configurations électroniques

QCM & Petits exercices

Exercice 1 : vrai ou faux ?

Soit un atome inconnu, X.

On considère un électron de cet atome, dans un état quantique défini par les nombres n = 4 et $m_l = 2$.

Cochez la bonne réponse

Les affirmations suivantes sont-elles vraies ? Justifier vos réponses.

a) Cet électron peut se trouver dans une orbitale d.	☐ VRAI	☐ FAUX
b) Cet électron se trouve nécessairement dans une orbitale d.	☐ VRAI	☐ FAUX
c) Cet électron peut se trouver dans une des trois orbitales 4p.	☐ VRAI	☐ FAUX
d) Cet électron peut présenter un nombre quantique magnétique de spin $m_s = -\frac{1}{2}$.	□ VRAI	☐ FAUX
e) Cet électron peut posséder un nombre quantique secondaire <i>l</i> = 5.	□ VRAI	☐ FAUX

Exercice 2 : états quantiques permis et interdits

Parmi les ensembles de nombres quantiques suivants, préciser ceux qui correspondent à des états « interdits » ; le cas échéant, préciser ce qui ne va pas.

	n = 2	1 = 1	$m_1 = -1$
	n = 1	1 = 1	$m_l = 0$
	n = 8	1 = 7	$m_1 = -6$
П	n = 1	1 = 0	$m_1 = 2$

Exercice 3 : orbitales possibles ou impossibles ?

Lesquelles de ces notations d'orbitales sont incorrectes ?					
	Lesquelles de ce	s notations d	'orbitales	sont incorrect	es î

	□1s	□7d	□9s	$\square 3f$	□4f	□2d
--	-----	-----	-----	--------------	-----	-----

Exercice 4 : décompte d'orbitales atomiques

Dans un atome, combien d'orbitales peuvent être dites :

 $5p_{-1}:$ ____ n = 4: ____

Exercice 5 : décompte d'électrons

Dans un atome, quel est le nombre maximal d'électrons qui peuvent prendre les nombres quantiques suivants:

a) n = 4: b) n = 5 et $m_1 = +1$: c) n = 5 et $m_2 = +\frac{1}{2}$ d) n = 2 et l = 1

e) n = 2, l = 1, $m_l = -1$ et $m_s = -\frac{1}{2}$: f) n = 0, l = 0, $m_l = 0$:

Exercice 6 : vrai ou faux ?

Les affirmations suivantes sont-elles vraies ou fausses?

a- Si I = 1, l'électron occupe une orbitale de type « nd »

vrai: 🗆 faux: □

b- Si n = 2, m_l peut être égal à -1

vrai: 🔲 faux: □

c- Pour un électron « d », m_l peut prendre la valeur 3

faux: □ vrai: 🔲

d- Si I = 2, la sous-couche correspondante peut recevoir au plus 10 électrons vrai: ☐ faux: ☐

e- Le nombre n d'un électron d'une sous-couche f peut être égal à 3 vrai: faux:

Exercice 7 : principe d'exclusion de Pauli

Parmi les configurations électroniques suivantes, quelles sont celles qui sont exclues parce qu'elles ne respectent pas le principe d'exclusion de Pauli?

Configuration électronique	Possible	Exclue !	Justification
1s ² 2s ² 2p ⁷			
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶			
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹²			
1s ² 2s ² 3s ³			

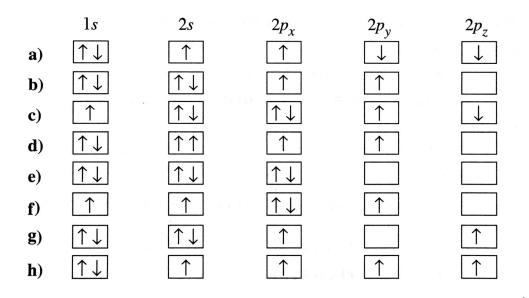
Exercice 8 : états quantiques

Pour un atome, la série des nombres quantiques n = 3; l = 1; $m_l = 1$...

- a) ... décrit un électron dans une orbitale atomique 3d?
- b) ...décrit un électron dans une orbitale atomique 3p?
- c) ...peut s'appliquer à 4 électrons?

Exercice 9 : choix multiples

Parmi les ensembles suivants $\{n; l; m_l; m_s\}$, lesquels peuvent décrire un électron dans un atome ? Donner alors le symbole (ns, np,...) de l'OA dans laquelle se trouve cet électron.


- a) {2; 2; 1; +1/2}
- b) { 2; 2; -1; +1/2 }
- c) { 4; 0; -1; +1/2 }
- d) {3; 1; 0; -1/2}

Exercice 10 : Configurations électroniques de l'élément de carbone

Voici 8 configurations de l'élément carbone (vous lirez les notations $2p_x$, $2p_y$ et $2p_z$ comme décrivant les OA $2p_{-1}$, $2p_0$ et $2p_1$).

Il y a parmi celles-ci:

- 2 configurations qui peuvent décrire toutes les deux l'atome de carbone dans son état fondamental;
- 1 configuration de l'atome de carbone qui est interdite ;
- 3 configurations qui représentent des états excités de l'atome de carbone ;
- 1 configuration de l'ion C⁺, vous préciserez si c'est une configuration fondamentale ou excitée ;
- 1 configuration de l'ion C, vous préciserez si c'est une configuration fondamentale ou excitée ;

